1 마스터 플랜 수립

 

1. 분석 마스터 플랜 수립 프레임워크

- 우선순위 설정 : 전략적 중요도, 비즈니스 성과 ROI, 분석과제의 실행 용이성

- 적용범위 방식 고려 : 업무 내재화 적용 수준, 별도의 분석 화면 일단 적용할지

 분석 데이터 /외부 적용 수준 고려, 분석 기술 적용 수준


 

- 정보전략계획 ISP(Information Strategy Planning) : 기업, 공공기관 시스템 중장기 로드맵 정의 절차

 

2. 수행 과제 도출 우선순위 평가

- 정의된 데이터 과제에 대한 실행 순서를 정하는

- 업무 영역별로 도출된 분석 과제를 평가기준에 따라 평가, 과제의 후행 관계 고려, 적용 순위 조정

- 전략적 중요도, 실행 용이성 기업에서 고려하는 중요 가치 기준에 따라 다양한 관점 우선순위 수립


 

- 과제 우선순위 평가기준

1) 전략적 중요도

- 전략적 필요성 : 전략적 목표 업무에 직접적이 연관관계가 밀접한 정도

    이슈 미해결 발생하게 위험 손실에 대한 정도

- 시급성 : 사용자 요구사항, 업무능률 향상을 위해 시급히 수행되어야 하는 정도

 향후 경쟁우위 확보를 위한 중요성 정도

2) 실행 용이성

- 투자 용이성 : 기간 인력 투입 용이성, 비용 투자 예산 확보 가능성

- 기술 용이성 : 적용 기술의 안정성 검증, 응용시스템, 하드웨어 유지보수 용이성

 개발 스킬 성숙도 신기술 적용성 정도

 

- 빅데이터 4V

- 투자비용측면 : 크기 - 저장에 따른 비용 투자

    다양성 - 유형에 따라 정형/비정형/반정형, 외부/내부/소셜 등을 입수하는 투자

   생성속도 - 빠르게 가공, 분석하는 기술 요구, 아키텍쳐의 변형에 따른 투자

- 비즈니스 효과 : 가치 - 데이터 분석 통한 달성하고자 하는 목표 가치 


 

- ROI 요소 고려한 우선순위 평가 기준

- 전략적 중요도에 따른 시급성이 가장 중요한 기준 : 현재 또는 미래 적정 시기 고려

- 분석순위를 고려한 난이도 : 비용, 범위 측면에서 적용하기 쉬운지, 어려운지

- 과제 범위를 시범과제 형태로 할지, 처음부터 크게 할지, 소스는 /외부 어디까지 쓸지


 

-포트폴리오 4분면 분석을 통한 과제 우선순위 선정 기법


- 우선적인 분석 과제 적용 3영역, 가장 늦은 것은 2영역

- '시급성' : 3 → 4 → 2

1영역은 경영진, 담당자의 의사결정에 따라 조정 가능 난이도 조율에 따라 3으로 변경

- '난이도' : 3 → 1 → 2

기본 시스템 영향 최소화, 별도 분리해서 난이도 조절하면 우선순위 조절 가능

- 분석과제를 일관적으로 할지, 부분적으로 할지에 따른 의사결정 필요


 

3. 이행계획 수립

1) 로드맵 수립

- 사분면 분석 이후 과제별 적용범위 방식을 고려하여 우선순위 최종 결정 단계적 구현 로드맵


2) 세부 이행계획 수립

- 폭포수 방식 또는 정련의 과정 반복하여 완성도 높힘, 혼합형 적용


 

2 분석 거버넌스 체계 수립

 

1. 거버넌스 체계 개요

- 의사결정 강조될수록 데이터 분석 활용을 위한 관리 중요해짐, 기업문화로 정착하고 분석 업무 고도화

- 거버넌스 체계

- Organization : 분석 기획, 관리 추진 조직

- Process : 과제 기획, 운영 프로세스

- System : 분석 관련 시스템, IT 시스템

- Data : 데이터 거버넌스

- Human Resource : 분석 관련 교육, 마인드 육성 체계

 

2. 데이터 분석 성숙도 모델 수준 진단

- 데이터 분석 수준 진단을 통해 무엇을 준비하고 보완해야 하는지 유형 분석 방향성 결정

- 경쟁력 확보를 위해 선택과 집중, 보완점 등의 개선방안 도출

 

1) 분석 준비도(Readiness)

  • 분석 업무 파악 : 발생한 사실 분석 업무, 예측 분석 업무, 시물레이션 분석 업무,

최적화 분석 업무, 분석 업무 정기적 개선

  • 인력 조직 : 분석 전문가 직무 존재, 분석 전문가 교육 훈련 프로그램, 관리자들의 기본적 분석 능력

전자 분석업무 총괄 조직 존재, 경영진 분석 업무 이해 능력

  • 분석 기법 : 업무별 적합한 분석기법 사용, 분석 업무 도입 방법론, 분석기법 라이브러리

분석기법 효과성 평가, 분석기법 정기적 개선

  • 분석 데이터 : 분석 업무를 위한 데이터 충분성/신뢰성/적시성

비구조적 데이터 관리, 외부 데이터 활용 체계, 기준 데이터 관리(MDM)

  • 분석 문화 : 사실에 근거한 의사결정, 관리자의 데이터 중시, 회의 등에서 데이터 활용

경영진의 직관보다 데이터, 데이터 공유 협업 문화

  • IT 인프라 : 운영시스템 데이터 통합, EAI/ETL 데이터 유통체계, 분석 전용 서버 스토리지

빅데이터 분석 환경, 통계 분석 환경, 비주얼 분석 환경

 

2) 분석 성숙도(Maturity)

- CMMI (Capability Maturity Model Integration) : 소프트웨어 공학에서 개발 능력과 조직 성숙도 파악

단계

도입단계

활용단계

확산단계

최적화단계

설명

분석을 시작하여

환경과 시스템 구축

분석 결과를

실제 업무 적용

전사 차원

분석 관리 공유

분석 진화하여

혁신 성과 향상에 기여

비즈니스

부문

실적분석 통계

정기보고 수행

운영데이터 기반

미래 결과 예측

시물레이션

운영 데이터 기반

전사 성과 실시간 분석

프로세스 혁신 3.0

분석 규칙 관리

이벤트 관리

외부 환경분석 활용

최적화 업무 분석

실시간 분석

비즈니스 모델 진화

조직/역량

부문

일부 부서에서 수행

담당자 역량 의존

전문 담당부서

분석기법 수행

관리자 분석 수행

전사 모든 부서 수행

분석 COE 조직 운영

데이터 사이언티스트 확보

데이터 사이언티스트 그룹

경영진 분석 활용

전략 연계

IT 부문

데이터 웨어하우스

데이터 마트

ETL/EAI

OLAP

실시간 대시보드

통계 분석 환경

빅데이터 관리 환경

시물레이션 최적화

비주얼 분석

분석 전용 서버

분석 협업환경

분석 Sandbox

프로세스 내재화

빅데이터 분석

 

3) 분석 수준 진단 결과

- 준비형 : 낮은 준비도, 낮은 성숙도 → 사전 준비가 필요한 유형

- 정착형 : 낮은 준비도, 약간의 성숙도 → 분석의 정착이 필요한 유형

- 도입형 : 분석기업은 부족하지만, 조직 인력은 준비가 되어 있음 데이터 분석 바로 도입 가능

- 확산형 : 6가지 분석 구성요소 모두 갖추고 부분적으로 도입해 지속적인 확산이 가능한 기업


 

3. 분석 지원 인프라 방안 수립

- 단위별로는 복잡하고 비용 증대란 부작용, 분석 마스터 플랜을 장기적으로 안정적 고려 필요


 

- 플랫폼 : 분석 서비스를 위한 응용 프로그램이 실행될 있는 기초 시스템, 환경 제공


 

4. 데이터 거버넌스 체계 수립

- 전사 차원의 데이터 관리체계필요 : 중복 비표준에 따른 오류, 활용 저하의 문제점

- 전사 차원의 모든 데이터에 대하여 표준화된 관리 체계 수립하고 운영을 위한 프레임워크, 저장소 구축

- 관리 대상 : 마스터 데이터, 메타 데이터, 데이터 사전

- 가용성, 유용성, 통합성, 보안성, 안정성 확보 가능

- 독자적 수행 또는 전사 차원의 IT 거버넌스나 EA 구성 요소로 구축

- 빅데이터 관리, 데이터 최적화, 정보보호, 생명주기 관리, 카테고리별 관리 책임자 지정

 

- 데이터 거버넌스 구성요소

- 원칙 : 데이터 유지 관리 위한 지침과 가이드, 보안, 품질기준, 변경관리

- 조직 : 데이터를 관리할 조직의 역할과 책임, 데이터 관리자, 데이터베이스 관리자, 데이터 아키텍트

- 프로세스 : 데이터 관리를 위한 활동과 체계, 작업절차, 모니터링 활동, 측정 활동

 

1) 데이터 표준화

- 데이터 표준 용어 설정 : 표준단어사전, 표준도메인사전, 표준 코드 구성, 상호점검 가능 프로세스

- 명명 규칙수립 : 언어별로 작성되어 매핑상태 유지

- 메타데이터 구축, 데이터 사전 구축 : 데이터 구조 체계 형성, 구조체계나 엔티티 관계 그래프 제공

2) 데이터 관리 체계

- 정합성 효율성을 위한 메타데이터와 데이터 사진의 관리 원칙 수립

- 항목별 상세 프로세스 생성, 관리, 운영을 위한 담당자 조직별 역할 책임 준비

- 데이터 생명 주기 관리 방안 수립 필요, 데이터 가용성 관리 비용 증대 문제 발생

3) 데이터 저장소 관리(Repository)

- 데이터 관리 체계 지원을 위한 워크플로우 관리용 응용 소프트웨어 지원

- 관리 대상 시스템과 인터페이스 통한 통제 필요

- 구조 변경에 따른 사전 영향 평가 수행, 효율적인 활용 가능

4) 표준화 활동

- 표준 준수 여부 주기적 점검, 모니터링 실시

- 안정적인 정착을 위한 계속적인 변화관리 주기적 교육 진행

- 표준화 개선 활동을 통한 실용성 증대

 

5. 데이터 조직 인력방안 수립

- 데이터 분석 조직

목표 : 기업의 경쟁력 확보를 위한 가치 발견, 최적화 목표

역할 : 업무 전반에 걸친 분석 과제 발굴, 의미있는 인사이트 찾아 실행하는 역할 수행

구성 : 다양한 분야의 지식과 경험을 가진 인력과 업무 담당자로 구성된 전사 또는 부서 조직


 

- 분석 조직 인력 구성 고려사항


 

- 분석 조직 구조

1) 집중형 조직구조

- 조직내 별도의 전담조직, 분석을 담당하여 전사의 분석 과제 우선순위 추진 가능

- 현업 부서와 분석 업무가 중복 또는 이원화 가능성

2) 기능 중심의 조직구조

- 일반적형태, 해당 업무 부서에서 직접 분석

- 전사적 관점의 핵심 분석 어려움, 특정 부서에 국한될 수도 중복될 수도 있음

3) 분산된 조직 구조

- 분석 조직 인력이 현업 부서에 배치함

- 전사적 차원의 우선순위 선정 수행 가능, 분석 결과 신속히 실무에 적용 가능


분석 전문 부서에 모아 인재들을 모아 구성, 조직 경쟁력 극대화 필요


 

6. 분석 과제 관리 프로세스 수립

- 과제 발굴 : 개별 조직이나 개인 아이디어 발굴, 과제화하여 풀로 관리하면서 프로젝트 선정

- 과제 수행 모니터링 : 팀을 구성하여 과제 실행, 지속적인 모니터링과 과제 결과 공유 개선

조직 분석 문화 내재화 경쟁력 확보 가능, 풀을 축적 관리 함으로 시행착오 최소화 가능


 

7. 분석 교육 변화 관리

- 분석 가치를 극대화, 내재화 하는 안정적인 추진기로 들어가기 위해서는 교육 마인드 육성 필요

- 분석 도입에 대한 문화적 대응


- 데이터 분석 방법 분석적 사고 교육


+ Recent posts